Modeling and Simulation of Turbulent Flows through a Solar Air Heater Having Square-Sectioned Transverse Rib Roughness on the Absorber Plate
نویسندگان
چکیده
Solar air heater is a type of heat exchanger which transforms solar radiation into heat energy. The thermal performance of conventional solar air heater has been found to be poor because of the low convective heat transfer coefficient from the absorber plate to the air. Use of artificial roughness on a surface is an effective technique to enhance the rate of heat transfer. A CFD-based investigation of turbulent flow through a solar air heater roughened with square-sectioned transverse rib roughness has been performed. Three different values of rib-pitch (P) and rib-height (e) have been taken such that the relative roughness pitch (P/e = 14.29) remains constant. The relative roughness height, e/D, varies from 0.021 to 0.06, and the Reynolds number, Re, varies from 3800 to 18,000. The results predicted by CFD show that the average heat transfer, average flow friction, and thermohydraulic performance parameter are strongly dependent on the relative roughness height. A maximum value of thermohydraulic performance parameter has been found to be 1.8 for the range of parameters investigated. Comparisons with previously published work have been performed and found to be in excellent agreement.
منابع مشابه
A CFD based thermo-hydraulic performance analysis of an artificially roughened solar air heater having equilateral triangular sectioned rib roughness on the absorber plate
In this article, a numerical investigation is conducted to analyze the two-dimensional incompressible Navier–Stokes flows through the artificially roughened solar air heater for relevant Reynolds number ranges from 3800 to 18,000. Twelve different configurations of equilateral triangular sectioned rib (P/e = 7.14–35.71 and e/d = 0.021–0.042) have been used as roughness element. The governing eq...
متن کاملEnhancement of heat transfer coefficient using Diamond shaped roughness on the absorber plate of solar air heater
Solar collector (Air heater) has low thermal efficiency due to the low thermal conductivity between Air and absorber plate. So there is a need to enhance the thermal conductivity between air and absorber plate. This leads higher temperature to absorber plate and hence maximum thermal losses occurs to environment .It can be made possible by creating artificial roughness on absorber plate .There ...
متن کاملInvestigating The Parameters For The Performance Enhancement Of A Solar Air Heater Having Different Artificially Roughened Geometries
The use of an artificial roughness on a surface of absorber plate is an effective technique to enhance the rate of heat transfer to fluid flow in the duct of a solar air heater. This paper presents a comparison of parameters that enhance the heat transfer coefficient thus efficiency ofa solar air heater for different artificially roughened geometries for the Reynolds number from 2500 -18000. Th...
متن کاملPerformance of Single Pass Down Stream Solar Air Collector with Inclined Multiple V-Ribs
Solar air heater is a type of heat exchanger which transforms solar radiation into heat energy. The thermal performance of conventional solar air heater has been found to be poor because of the low convective heat transfer coefficient from the absorber plate to the air. It is attributed to the formation of a very thin boundary layer at the absorber plate surface commonly known as viscous sub-la...
متن کاملHeat Transfer and Friction Factor Study for Triangular Duct Solar Air Heater Having Discrete V-Shaped Ribs
Solar energy is a good option among renewable energy resources due to its easy availability and abundance. The simplest and most efficient way to utilize solar energy is to convert it into thermal energy and this can be done with the help of solar collectors. The thermal performance of such collectors is poor due to less heat transfer from the collector surface to air. In this work, experimenta...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2013 شماره
صفحات -
تاریخ انتشار 2013